
Sea Level Rise and Home Prices:
Evidence from Long Island

Justin Tyndall

jtyndall@hawaii.edu
University of Hawai'i Economic Research Organization

and University of Hawai'i at Mānoa Department of Economics
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Abstract

Global sea level rise is a known consequence of climate change. As predictions of sea
level rise have grown in magnitude and certainty, coastal real estate assets face an
increasing climate risk. I use a complete data set of repeated home sales from Long
Island in New York State to estimate the appreciation discount caused by the threat
of sea level rise. The repeat sale methodology allows for time-invariant, unobserved
property characteristics to be controlled for. Between 2000 and 2017, I find that resi-
dential properties that were exposed to future sea level rise experienced an annual price
appreciation rate of roughly one percentage point below unexposed properties. I pro-
vide numerous robustness checks to confirm this result. I also find evidence of demand
spillovers by estimating an appreciation premium for properties that are near the coast
but are relatively safe from sea level rise.
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1 Introduction

Predictions of global sea level rise have become more dire (Chen et al., 2017).

Current estimates suggest that by 2100 global sea level will be between 0.3 and 1.0

meters above 2000 levels (Church et al., 2013; Nicholls and Cazenave, 2010). The threat

of sea level rise is compounded by the predicted increase in climate change induced

extreme weather events that could cause water to surge into coastal areas (Seneviratne

et al., 2012). Many real estate assets on the coast will experience climate change induced

land erosion, flood events, or total inundation, all of which could decrease or eliminate

the asset’s value. I contribute new estimates of a climate change price effect in the US

housing market.

I estimate the extent to which climate risk has been priced into real estate transac-

tions for the Long Island housing market in New York State. Using repeated property

sales, I compare the rate of price appreciation among properties at risk from sea level

rise to other properties that are not at risk. The use of property level fixed effects al-

lows for the price effect of coastal proximity to be controlled for and the use of detailed

spatial coastline data allows for the control of unique appreciation trends for coastal

properties. I calculate the sea level rise exposure of properties by combining transaction

data with detailed elevation and flood map data. Results indicate that climate risk has

reduced the value of exposed residential properties on Long Island.

How the risks of sea level rise influence real estate has been studied by a recent

and growing literature. A starting point of the theoretical literature is the assumption

that property markets are populated by forward-looking agents with information on

future climate risk. Bunten and Kahn (2017) provided important theoretical work on

the effect of climate change risk on property development and investment. If climate

risk is included in the property valuation of buyers and sellers, financial incentives will

shift investment decisions and partially insulate against sudden climate shocks. Kahn
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(2016) provided an important overview of how individuals adapt to climate change and

Kahn (2014) as well as Desmet and Rossi-Hansberg (2015) provided further discussion

regarding adaptation in spatial location decisions. Severen et al. (2018) argued that

much of the future costs of climate change in land markets are already accounted for

due to pervasive information and beliefs about the probable effects of future climate

change.

Some empirical work has been undertaken to estimate the effect of exposure to sea

level rise on home prices. Bernstein et al. (2019) relied on Zillow home price data from

across the US and found that homes exposed to sea level rise sell at a 7% discount rela-

tive to other homes that are similar, based on observable characteristics. Contrastingly,

Murfin and Spiegel (2020) studied housing transaction data from US coastal states and

found no evidence of climate risk being priced into home sales. The study made use of

the fact that sea level rise affects different coastal areas differently due to local subsi-

dence or uplift of continental landmasses partially offsetting or exacerbating sea level

rise.

Buyers who personally believe climate change risk to be large are more likely

to incorporate climate change risk into their purchase decisions. Some studies have

found spatial heterogeneity in the US regarding to what extent climate change risk

is priced into real estate assets, driven by spatial heterogeneity in personal beliefs

about climate change risk. McNamara and Keeler (2013) supplied a model to study

coastal climate change risk in the US Northeast, noting that heterogeneity in agent

beliefs regarding climate change risk influence the overall support for climate mitigation

measures. Bakkensen and Barrage (2018) as well as Baldauf et al. (2020) further extend

theory and analysis of how belief heterogeneity affects the pricing of climate risk into

coastal property assets. Both studies find that households that are skeptical regarding

the risks posed by climate change are willing to pay relatively more for coastal assets
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that are in areas of significant risk, and this behavior leads to a difference in home

prices across local markets.

Informational issues are also addressed in studies of markets that have been ex-

posed to an extreme weather or flood event. Results have shown that individual weather

events can generate sudden shifts in how future climate risk is priced into real estate

assets. Gibson and Mullins (2020) investigated price declines associated with climate

risk in New York City. Results show significant price reductions for properties directly

exposed to information shocks, including flooding from Hurricane Sandy, changes to fed-

eral flood insurance, and the updating of FEMA floodplain maps. Ortega and Taspinar

(2018) looked specifically at the role of Hurricane Sandy on climate risk discounting

in New York City. The authors found a significant price discount that increased over

time in areas at risk of flooding. McCoy and Zhao (2018) analyzed a similar process in

New York City, finding that homeowners’ property investment decisions are influenced

by perceived flood risk. The effect of Hurricane Sandy on the behavior of sophisti-

cated real estate investors in New York City was examined in Eichholtz et al. (2019),

providing evidence that the implied future value of properties in storm damaged areas

fell compared to properties in comparison cities. Bin and Landry (2013) found that

the price of homes in North Carolina reflected flood risk much more strongly after a

nearby hurricane, despite long-term risk remaining constant. McKenzie and Levendis

(2010) uncovered a similar informational effect for properties in New Orleans after Hur-

ricane Katrina. For non-coastal flooding, Yi and Choi (2019) examined the effects of

a flood event in Iowa, and Zhang and Leonard (2019) examined a flood event in the

Fargo, North Dakota metropolitan area, both found that homes in flooded areas began

discounting the future value of their homes more heavily after the flood.

The US federal government takes an active role in regulating flood insurance (Sklarz

and Miller, 2018). Homes in high flood risk areas are required to purchase insurance
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against the risk of floods (Kriesel and Landry, 2004). The presence of a flood insur-

ance requirement will have two notable effects on prices in the coastal market. First,

the insurance requirement represents a cost to home owners, putting downward pres-

sure on the price of coastal real estate assets. Second, holding insurance will reduce

the downside risk of a flood event, which provides value to the homeowner. There is

some evidence that flood insurance is underpriced, particularly in very high risk areas

(Kousky and Shabman, 2014). Discounted flood insurance would put upward pressure

on prices as the property owners are able to offload downside risk to insurance programs,

while maintaining the upside risk of price appreciation. Kousky et al. (2020) provided

a thorough discussion of the role of flood insurance on the single family housing market

in the US, including the behavioral responses of homeowners.

Overall, empirical studies on sea level rise and real estate values have found mixed

and conflicting results regarding the existence and magnitude of a price effect. I provide

analysis from an important setting where future sea level rise will affect a large share of

properties. By using a complete data set of housing transactions from a large coastal

market over an 18 year period I am able to provide precise identification of effects. I

also identify demand spillovers wherein properties in areas of high climate risk expe-

rience an appreciation penalty while properties close to the coast but with lower risk

actually experience an appreciation premium as buyer demand for coastal properties

shifts within the coastal housing market.

The paper will proceed as follows. The next section discusses details of the Long

Island property market. The third section introduces data sources. The fourth section

provides the methodology. The fifth section provides primary results and numerous

robustness tests and the final section concludes.
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2 The Long Island Property Market

The study area includes Nassau and Suffolk counties in New York State. These

counties comprise all of Long Island, outside of New York City. Figure 1 provides a map

indicating the study area. The numerous coastal communities on Long Island provide

an excellent opportunity to study the impact of sea level rise on a real estate market

with significant coastal exposure. A significant portion of real estate assets on Long

Island are within a few meters of current sea levels, and coastal areas are at risk of

damage due to storm events, particularly hurricanes.

Figure 1: Long Island Study Area

2 Nassau County 2 Suffolk County

- Property transaction > 3 m above sea level
- Property transaction < 3 m above sea level

Each of the 73,346 unique properties in the repeat sales transaction data
are represented as a point on the map. Red dots indicate properties that
are within three meters of sea level. The large majority of properties that
are close to sea level are on the southern coast of Long Island.

Table 1 provides demographic summary statistics for the study area and compares
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the demographics of Long Island to the US as a whole. Nassau and Suffolk counties have

higher income and education levels than the US average. The racial composition of the

counties are relatively representative of the national population. Nassau and Suffolk

have a high rate of homeownership, with 81.3% of residents being owner-occupiers,

compared to the national rate of 66.1%.

Table 1: Demographic Characteristics of Study Area

Nassau and Suffolk USA
Counties

Population 2,820,124 306,603,772
Median household income 89,947 52,762
College education rate (%) 36.6 28.2
Median Age 39.8 37.0
White (%) 78.2 74.1
Black (%) 9.1 12.5
Asian (%) 5.4 4.7
Hispanic (%) 15.1 16.1
Owner-occupancy rate (%) 81.3 66.1

Data from the 2007-2011 American Community Survey.

Coastal erosion and flooding are long-term issues faced by coastal landowners on

Long Island. An important event for real estate assets in Long Island was Hurricane

Sandy, which struck the area in October 2012. The storm event caused significant

property damage on Long Island, in New York City, and neighboring states. In addi-

tion to the direct damage caused by the storm, Hurricane Sandy may have impacted

the perceptions of local homeowners as to the risk of climate change related property

damage (McCoy and Zhao, 2018; Ortega and Taspinar, 2018).

3 Data

I use housing data provided by the New York State Department of Taxation and

Finance (NYSDTF), Office of Real Property Tax Services. The data covers all real

estate transactions within the state of New York between 2000 and mid-2017. I trim

6



the data to only Suffolk and Nassau counties.

I drop a number of observations to focus analysis on reliable data and to enable

the repeat sales methodology. I drop any observation that sold for less than $50,000,

as such transactions are unlikely to relate to legitimate, competitive sales. I keep only

sales that are classified by the NYSDTF as “arms-length.” I also drop observations

with incomplete street address information. I exclude sales of individual condominium

units. In part, I exclude condominium units because the unit number of condomini-

ums are not reliably recorded in all cases, preventing the matching of specific units

through time. I further limit the sample to the following property types as defined

by the NYSDTF: One Family Year-Round Residences, Two Family Year-Round Res-

idences, Three Family Year-Round Residences, Apartments, Multiple Residences and

Residential Vacant Land. These property types cover 97.3% of property sales in Suffolk

and Nassau counties. The excluded property types include commercial, industrial and

agricultural land uses. I will provide robustness checks regarding the effects of these

sample limitations.

I conduct analysis only on properties that sold at least twice during the study

period. Limiting the sample to repeat sales will be important to the methodology

wherein I introduce fixed effects at the property level, which partials out the effect of

all time-invariant housing characteristics. I use the recorded address of the transacted

property to identify unique properties that sold multiple times. I normalize the street

names to account for the use of abbreviations, for example matching Rd to Road.

The NYSDTF flags observations that have undergone significant renovations between

sales. Homes that underwent significant renovations can not be reasonably assumed to

represent the same asset so I consider the post-renovation property as a unique property

in the repeat sales method. 0.4% of the properties in the sample underwent a significant

renovation between sales.

7



The final repeat sales data set contains 164,026 transactions spanning 73,346

unique properties. A total of 59,132 properties sold exactly twice, 11,668 properties

sold three times, and the remainder sold more than three times. The most transacted

property in the data set was sold eleven times. Fully 95.0% of transactions in the final

sample are classified as “One Family Year-Round Residences.” The median sale price

among the repeat sales properties is $443,985. Figure 2 graphs the change in median

sale price over time within the repeat sales sample. Home prices on Long Island climbed

significantly along with the national US housing market during the 2000-2007 period,

with the median property price rising by 70.8%. The 2007-2017 period corresponds

to a significant decline in home prices on Long Island, with the median home value

dropping by 27.2%. The average property within the sample appreciated at a rate of

0.5% annually in real terms (2.7% in nominal terms) across the 2000-2017 study pe-

riod. Figure 2 also displays annual median sales prices for the full sample of properties

(N=451,237), including those that sold only once over the study period. The two series

track very closely to one another. The correlation coefficient between the two series is

0.992, suggesting that the repeat sales data is representative of the overall market.

Figure 2: Trend in Repeat Sale Median Property Price

The median sale price of a property on Long Island rose between 2000 and
2007. Prices declined beginning with the Great Recession. Between 2012
and 2017 prices were relatively stable. All prices are in 2017 USD.
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Figure 3 shows the distribution of sale prices across the sample of repeat sale

observations. Panel A shows the sale prices in 2017 USD. I use the log of the sale price

in analysis. Panel B shows the distribution of logged sale prices, which provides an

approximately normally distributed dependent variable for analysis.

Figure 3: Sale Price Distribution

A. Sale Prices

B. Logged Sale Prices

Panel A shows the distribution of sale prices, across all years in the sample.
Panel A truncates the data at $2,000,000. Panel B shows the distribution
of logged sale prices, which will be the variable used in analysis. All prices
are in 2017 USD.

I use the street address of each property in the NYSDTF data in order to calculate

the latitude and longitude coordinates of the property’s centroid. I rely on the geocod-

ing web service HERE to convert street addresses into precise latitude and longitude
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coordinates.

Two separate data sources will be used to evaluate the extent to which a property

is exposed to the risk of sea level rise. First, I make use of the Federal Emergency

Management Agency (FEMA) flood maps. In particular, I use the FEMA National

Flood Hazard Layer for Nassau and Suffolk counties. The maps classify all land into

zones of various flood risk. I use FEMA defined 100-year flood zones, which correspond

to areas that have at least a 1% chance of flooding during a given year. I assign each

property transaction as being either inside or outside of a 100-year flood zone through

spatial mapping software.

The second definition I use for sea level rise exposure is the elevation at the cen-

troid of the property. Using the latitude and longitude coordinates of each property’s

centroid, I make use of the United States Geological Survey (USGS) online Elevation

Point Query Service. The web service can return the elevation of any set of latitude

and longitude points for the US. I generate an individual query for all 73,348 unique

properties, creating precise elevation estimates. The elevation estimates from USGS

are interpolated from the 1/3 arc-second 3D Elevation Program DEM dataset. For

Long Island, USGS elevation points are measured approximately every 8 meters and

interpolated between these points, providing highly accurate elevation estimates.

Figure 4A provides an elevation map of Long Island. Most areas that are within

three meters of sea level are located along the southern coast of Long Island. Figure

1 provides the locations of all the transactions in the data set that are within three

meters of sea level. The elevation profile of Long Island is such that coastal areas are

the only locations that have an elevation that is close to sea level. There are no inland

areas of low elevation that do not extend to the coast. This fact is important to justify

using elevation as a proxy for exposure to sea level rise. Figure 4B maps the location

of FEMA defined 100-year flood zones. The location of FEMA flood zones are highly
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Figure 4

A. Elevation Map of the Study Area

< 3 m (3 m , 10m) (10 m , 25 m) (25 m, 50 m) > 50 m

B. FEMA Flood Map

FEMA 100-year flood zone

Panel A displays the elevation across Nassau and Suffolk counties. Most
areas close to sea level are on the south coast. Panel B displays all areas
that are classified by FEMA as being within a 100-year flood zone.

correlated with areas of low elevation.

Figure 5 provides a histogram of the elevation of properties in the repeat sales
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Figure 5: Elevation of Repeat Sale Properties

The plot shows the frequency of properties at each elevation level, using
one meter bins. For example, there are 4,300 properties in the data set
that are at an elevation of between one and two meters.

sample. A large share of properties are close to sea level. Across all properties, 11.4%

are within three meters of current sea level and 6.8% are within two meters.

I measure the distance of each property to the coast. I use the publicly available

New York State Civil Boundaries Shoreline shapefile. I calculate the shortest straight

line distance, in meters, from every property observation to the nearest coastline. I

make use of these measurements to control for potentially differential price appreciation

for properties with coastal proximity. By combining data on elevation with data on

coastal proximity, the proposed methodology will be able to separately identify the

price appreciation effects of coastal proximity from the appreciation effects of sea level

risk exposure.

Finally, I use the FEMA National Flood Insurance Act Redacted Claims Data

Set. The data provides census tract level information on insurance payments made by

FEMA. I assign each property to a census tract using the US Census TIGER shapefile.
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I calculate the total value of FEMA insurance claims that occurred in each census tract

in each year. Figure 6 shows the total value of claims made across the study period.

Claims totaling $2.5 billion were made in 2012, as a result of Hurricane Sandy. Across

the study period, 2012 accounted for 92% of all claims by value. The average value of

claims made in the other years was $13.4 million. I calculate the cumulative value of

claims that occurred in each tract through time. I use this variable as an indication of

past exposure to storm damage. For two consecutive sales of the same property, the

difference in this measure will be the total amount of local storm damage that occurred

between the two sale dates. I make use of this variable to test whether past storm

damage affects climate risk discounting.

Figure 6: Total Value of FEMA Claims on Long Island

In 2012, Hurricane Sandy caused a large increase in FEMA insurance claims
on Long Island.

4 Methodology

A major empirical challenge to identifying the price effect of coastal climate risk

is untangling the effect of exposure to sea level rise with the amenity effect of coastal

proximity. Homes closer to the beach are likely to sell at a premium to other homes,

independent of climate risk (Atreya and Czajkowski, 2019; Conroy and Milosch, 2011).
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I perform a repeat sales analysis and study how property appreciation differs during

a period of increasing projections of sea level rise. By focusing only on homes that

sold multiple times I am able to control for all time-invariant property characteristics,

including nearness to the beach as well as unobserved home quality that may be cor-

related with coastal proximity. Any changes to the characteristics of a property that

occurred between sales will not be controlled for by the property fixed effects. For

example, an owner might invest in household improvements between purchasing and

selling a property, such improvements could affect the value of the house but would

not be controlled for. I am able to observe significant renovation events in the data,

and treat homes that underwent renovations as unique homes with a unique fixed ef-

fect. However, minor renovations are not recorded and may introduce bias to estimates.

Billings (2015) argues that omitted variable bias from endogenous home improvements

in repeat sales analysis is likely to be small.

While I can control for the level effect of coastal proximity through fixed effects,

it may be the case that homes closer to the coast are appreciating at different rates

for reasons unrelated to climate risk. For example, home buyer preferences for coastal

proximity may vary through time. To deal with this potential source of bias I control for

the time trend of coastal proximity’s relationship to price, absorbing potential changes

in coastal preference. I test for the effect of adding different sets of coastal proximity

trends, including linear distance and vectors of dummy variables for various coastal

proximity distances. I find that these controls are important to results and that the

price premium for coastal proximity appears to be increasing over the study period.

Controlling for the effect of coastal proximity means that I am effectively comparing

homes that are at similar distances to the coast, but face different climate risk due to

their elevation or location within flood zones. Results are robust to various alternative

methods to control for coastal proximity time trends.
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Equation 1 represents the main estimation equation. The dependent variable

log(Pi) is the log of the sale price, where i indexes a property transaction. R is a

dummy variable indicating whether a property is located in an area at risk to sea level

rise. Y indicates the year of sale. Y is a continuous variable generated from the date

of sale. For example, a sale occurring exactly halfway through 2008 takes a value of

2008.5. U is a property level fixed effect. M is a fixed effect for year-month of sale.

W d is a dummy variable that takes a value of one if the property’s centroid is within

d meters of the coast. C is the county where the property is located. In alternative

specifications, I will replace the county time trends with other levels of geography.

log(Pi) = β0 + β1(Ri × Yi) + ΦUi + ΨMi + χ(W d
i × Yi) + κ(Ci × Yi) + εi (1)

In all specifications I use two-way clustered standard errors. Spatially, clusters

are at the zip code level. Where zip codes span both at risk (R = 1) and not at risk

observations (R = 0), I split the cluster in two, with one cluster containing R = 0

observations and the other including R = 1 observations. Splitting the clusters in this

way allows for the possibility of error correlation within local areas that share treatment

status. Temporally, I cluster standard errors at the year-month level.

The use of property fixed effects absorbs the average price of a particular property

across sales, allowing coefficients to capture price changes over time. The coefficient of

interest (β1) corresponds to the average difference in annual price appreciation between

properties that are located in areas at risk from sea level rise relative to properties that

are not at risk. I will test multiple definitions of “at risk.” Identifying the time trend

of coastal exposure (β1) accounts for the time elapsed between sales so that a home

with consecutive sales two years apart would experience twice the total appreciation
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effect on the log price as a property that had consecutive sales one year apart. In

turn, I apply treatment definitions that include whether the elevation at the property’s

centroid is within two, three, or four meters of sea level and whether the centroid is

within a FEMA defined flood zone. While land more than two meters above sea level

is generally above the reach of sea level rise projections, elevation might vary across

the property, meaning the property may contain areas directly exposed to sea level

rise. Additionally, storm induced flood events are a threat to properties even several

meters above sea level. While 6.8% of transactions occur among properties within two

meters of sea level, only 0.9% occur among properties within one meter. I therefore

use two meters as the lowest cutoff as there are not a sufficient number of properties

at lower elevations to precisely identify an effect. The estimate of β1 will account for

the combined effect of rising exposure to flood events in the near future, as well as long

term exposure to sea level rise that may affect the property through land erosion or

inundation.

Local idiosyncrasies such as tides, coastal materials, and man made structures will

influence the true level of exposure of an individual property. In the absence of data

and strong priors regarding their effect, I use the elevation of the property’s centroid

as a strong proxy for true exposure.

In the main specification, W d
i × Yi will include a vector of 19 unique time trends.

The vector includes an interaction between a dummy variable for being within 50 meters

of the coast, and time. I include similar controls at 50 meter intervals ranging from

50 to 1,000 meters. This vector of time trends controls for the potentially non linear

relationship between coastal proximity and price appreciation. Note that, a property

within 50 m of the coast would take a positive value for all of these coastal time trends.

I cannot directly identify which properties in the data have coastal frontage, however,

the inclusion of the 50 meter trend should serve as a strong proxy for any unique trends
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among properties that have coastal frontage. Because the coastal proximity controls are

highly correlated, they may suffer from multicollinearity issues. Identifying the unique

effects of the distance to coast trends is not important to the identification of the main

effect.

Homes with coastal exposure are more likely to have experienced damage from

past storm events. Additionally, considering past research on storm damage and risk

perceptions (McKenzie and Levendis, 2010; Ortega and Taspinar, 2018), areas that

have experienced past damage may price future climate risk into current prices more

aggressively. The presence of storm damage over the study period may influence the

above estimates through two distinct processes. First, some properties may have sus-

tained real damage to their structure which was not repaired before resale and therefore

resulted in a diminished sales price. Owners may also have responded by investing in

flood mitigation measures, which affect the home’s price. Second, the storm events may

have increased the awareness of potential buyers and sellers regarding local flood risk,

and caused them to reduce their valuation of the asset.

I test for a differential price appreciation effect between properties located in areas

that experienced different degrees of storm damage over the study period. The estima-

tion strategy follows a triple difference model setup, captured in Equation 2. I add a

term to the model that captures the interaction between a transacted property being

at risk (R), a measure of storm damage insurance claims made in the property’s census

tract (F ), and time (Y ). The variable F is measured using FEMA insurance claim

data. In separate regressions I will calculate F as either total storm damage occurring

over the study period or cumulative storm damage occurring prior to the particular

sale. Because F is highly skewed, I convert F from a dollar value into a binary variable

that takes a value of one if the property is in a tract above the 95th percentile in terms

of damage. I control for F directly, as storm damage may have a direct effect on prices.
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When F is calculated as total storm damage across the study period, F is absorbed

by the property fixed effects. I also control for the possibility that high-damage areas

appreciated at a different rate in general, regardless of coastal exposure, with a local

storm damage (F ) by time (Y ) interaction term. The form and notation of Equation

2 is otherwise consistent with Equation 1. A negative coefficient on the triple interac-

tion term (γ2) would indicate that properties in areas with greater local storm damage

suffered a larger price penalty from sea level rise exposure.

log(Pi) = β0 + γ1(Ri × Yi) + γ2(Ri × Fi × Yi) + γ3(Fi × Yi) + γ4Fi+

ΦUi + ΨMi + χ(W d
i × Yi) + κ(Ci × Yi) + εi

(2)

5 Results

Table 2 presents estimates of the effect of being exposed to coastal climate risk on

property appreciation. The estimation strategy corresponds to Equation 1. The first

definition of exposure is whether a home is within two meters of current sea level, shown

in column 1. I find that, conditional on distance to the coast, properties within two me-

ters of sea level experienced average annual price appreciation that was 1.4 percentage

points below properties at higher elevations. I find a slightly reduced estimate of 1.2

percentage points when increasing the treatment definition to three meters (column 2),

and a further reduced but still highly significant effect of 0.9 percentage points when the

definition is increased to four meters (column 3). The declining estimate is consistent

with a more severe effect for properties at higher risk. Column 4 considers a property

at risk to sea level rise if it is located within a FEMA defined 100-year flood risk zone.

I estimate a similar and significant effect of an annual reduction in price appreciation

of 1.0 percentage point. The estimated effects of sea level rise exposure across Table 2
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are all precisely estimated and highly significant.

Table 2: Effect of Sea Level Exposure on Price Appreciation

(1) (2) (3) (4)

At risk × Year -0.014** -0.012** -0.009* -0.010**
(0.004) (0.004) (0.004) (0.004)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.888 0.888 0.888 0.888
Adjusted R2 0.797 0.797 0.797 0.797
N 164,026 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.

Compared to the typical price appreciation on Long Island over the study period,

the estimated effects of sea level rise exposure are economically sizable. For example,

a home purchased on Long Island for $500,000 in nominal dollars in 2000 appreciated,

on average, to $730,000 by 2017. However, if the same home was within three meters

of sea level it would have only appreciated to $628,000 by 2017, on average.

An important component of the identification strategy is to control for the pos-

sibility that there had been differential appreciation of properties close to the coast

for reasons unrelated to climate change. For example, home buyer tastes may have

changed over the study period. I address this in the main specification by including a

series of controls that capture differential time trends for coastal properties (Equation

1). The distances from the coast I select to construct control variables are somewhat

arbitrary. In Table 3, I evaluate the robustness of the main result to different sets of

coastal proximity time trends. I repeat the Table 2, column 2 estimate, which used the

three meter definition of exposure, in Table 3 but alter the coastal time trend controls.
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Table 3: Effect of Coastal Proximity Time Trend Controls on Results

(1) (2) (3) (4) (5)

At risk × Year 0.004 -0.007 -0.012** -0.012** -0.013**
(0.003) (0.004) (0.004) (0.004) (0.004)

Distance to coast × Year -0.027** -0.019**
(0.006) (0.006)

Within 100 m of coast × Year 0.001 0.001
(0.003) (0.003)

Within 200 m of coast × Year 0.004 0.004 0.004
(0.002) (0.002) (0.002)

Within 300 m of coast × Year -0.000 -0.000
(0.002) (0.002)

Within 400 m of coast × Year 0.001 0.001 0.001
(0.002) (0.002) (0.002)

Within 500 m of coast × Year 0.001 0.000
(0.003) (0.003)

Within 600 m of coast × Year 0.004 0.004 0.004
(0.002) (0.003) (0.003)

Within 700 m of coast × Year -0.000 -0.001
(0.003) (0.003)

Within 800 m of coast × Year 0.002 0.002 0.002
(0.002) (0.002) (0.002)

Within 900 m of coast × Year 0.001 0.001
(0.002) (0.002)

Within 1000 m of coast × Year 0.012** 0.012** 0.004
(0.003) (0.003) (0.002)

Time fixed effects Y Y Y Y Y
Property fixed effects Y Y Y Y Y
County time trends Y Y Y Y Y
At risk definition 3 m 3 m 3 m 3 m 3 m

R2 0.887 0.888 0.888 0.888 0.889
Adjusted R2 0.794 0.797 0.797 0.797 0.798
N 164,026 164,026 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure. The variable “Distance to coast” is in
units of 10 kilometers.

In Table 3 column 1, I remove all coastal proximity time trends. In this speci-

fication, I estimate a small, insignificant positive effect of sea level exposure on price

appreciation. The positive effect would suggest that the price appreciation trend of
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properties close to the coast outperformed properties further from the coast, and the

exposure variable is proxying for this amenity value of coastal access. In columns 2-5 I

add time trend controls that capture differential appreciation for properties with coastal

proximity. Column 2 adds only a linear time trend of time interacted with distance

to the coast, column 3 adds a unique time trends for properties within 200, 400, 600,

800 and 1,000 meters of the coast, column 4 increases the number of time trends by

reducing the interval between controls to 100 meters and column 5 includes both the

linear distance time trend and the 100 meter interval time trends. The main estimate

of interest changes little between columns 3-5, suggesting the main model is able to

control for changing market preferences for coastal proximity and isolate the partial

effect of climate risk.

I display coefficients for all coastal proximity control variables in Table 3 for trans-

parency, though these coefficient estimates may be unreliable due to multicollinearity.

The coefficient on the linear time trend of distance to the coast (columns 2 and 5)

is estimated as significant and negative, suggesting that properties close to the coast

appreciated at a faster rate, conditional on sea level rise exposure.

In addition to coastal proximity time trends, I include time trends at the county

level. In Table 4 I test for the sensitivity of results to time trends implemented at

alternative geographic units. Column 1 shows the estimate when county time trends

are removed, column 2 repeats the main specification, column 3 includes time trends

unique to local school districts and column 4 includes zip code level time trends. There

are 125 school districts and 172 zip codes with at least one repeated sale property. The

main estimate is essentially unchanged in columns 1-3. With the inclusion of 172 unique

time trend controls by zip code in column 4, the estimated effect of sea level exposure

becomes statistically insignificant. The inclusion of so many time trends in column

4 is absorbing much of the identifiable statistical variation and attenuating estimates
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towards zero.

Table 4: Effect of Local Time Trend Controls on Results

(1) (2) (3) (4)

At risk × Year -0.011** -0.012** -0.011* -0.001
(0.004) (0.004) (0.004) (0.001)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
At risk definition 3 m 3 m 3 m 3 m
Time trends none County School Dist. Zip Code

R2 0.888 0.888 0.889 0.899
Adjusted R2 0.797 0.797 0.799 0.816
N 164,026 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.

In the above analysis, I include all repeat sales occurring within Nassau and Suffolk

counties. However, properties far from the coast may represent a different submarket

and may therefore be relatively poor control observations. Coastal homes may share

unique characteristics that are experiencing unique demand trends over the study pe-

riod. While I tightly control for coastal proximity, limiting control observations to

properties that are somewhat close to the coast may provide a cleaner estimate. As a

robustness check, I repeat the analysis while limiting the observations to include only

those properties within two kilometers of the coast. This strategy substantially reduces

the number of transactions in the sample from 164,026 to 62,477. I provide a map of

the areas of Long Island that are within two kilometers of the coast in Appendix A. If

demand for properties close to the coast had a differential trend over the study period

for uncontrolled for reasons this could potentially be a source of bias for the full sample

specification, but this bias should be reduced in the coastal sample analysis.

Coastal sample results are provided in Table 5. I find results that are very similar
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to the main estimates when I limit the sample to properties within two kilometers of the

coast. The result demonstrates that coefficient estimates are not driven by observations

far from the coast.

Table 5: Effect of Sea Level Exposure on Price Appreciation, Coastal Sample

(1) (2) (3) (4)

At risk × Year -0.013** -0.011** -0.008* -0.007
(0.004) (0.004) (0.004) (0.004)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.900 0.900 0.899 0.899
Adjusted R2 0.817 0.817 0.817 0.816
N 62,477 62,477 62,477 62,477

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.

In Table 5 estimates, I choose a cutoff of two kilometers to limit the sample. Figure

7 shows β1 estimates (using the three meter exposure definition) but varies the distance

to coast cutoff value used for filtering observations. I test alternative values ranging

from one to 10 kilometers. I find the negative price effect is highly robust to truncating

the sample at any of these distances.

I expect that the direct relationship between climate risk and elevation is only

relevant for properties fairly close to sea level, as properties at relatively high altitudes

face no risk from rising seas. However, while climate risk should clearly reduce demand

for at risk properties, it may increase demand for properties that are good substitutes

for at risk properties. Properties that have good coastal access, but face a low risk from

sea level rise may experience an increase in demand. I test for the presence of demand

spillovers by estimating unique price appreciation premiums for sets of properties in
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Figure 7: Effect of Sample Selection on Main Estimate (β1)

The point estimates correspond to the partial effect of sea level rise expo-
sure on annual property appreciation (β1). I use the three meter elevation
definition of exposure. The sample cutoff is varied along the horizontal
axis, with the sample size increasing from left to right. The figure displays
10 unique regression estimates. Estimates where the zero line falls outside
of the confidence interval are statistically significant.

various elevation buckets. I limit this analysis to properties within two kilometers of

the coast to focus on the coastal real estate market. Figure 8 shows the results of 10

unique estimates of β1 (Equation 1) as the “at risk” definition is changed. The leftmost

data point corresponds to the effect of being within two meters of sea level, which is

equivalent to the Table 5, column 1 estimate. Moving rightwards, the subsequent point

shows the estimated effect of being within 2-4 meters of sea level and the elevation

buckets similarly increase by two thereafter.

Conditional on coastal proximity, climate risk seems to have significantly dimin-

ished the demand for low elevation properties, but increased the demand for higher

elevation properties. Figure 8 shows the strong negative price appreciation effect of

being within two meters of sea level. For estimates that span higher elevation buckets,
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I find some evidence of a price premium relative to the rest of the coastal market. For

the bucket spanning 8-10 meters I find these properties had an annual price apprecia-

tion rate of 0.8% above other coastal properties. I interpret this pattern as representing

demand substitution within the coastal real estate market, away from the riskiest loca-

tions and towards relatively less risky locations. Because the estimates are controlling

for distance to the coast, the effect estimated is essentially comparing homes that are

the same distance from the coast but face different risk exposure due to elevation.

Figure 8: Estimating Demand Spillovers in the Coastal Market

The point estimates correspond to the partial effect of a property being
within a specific two meter elevation bucket. For example, the leftmost
point estimate is the partial effect of being within two meters of sea level
and the subsequent point estimate shows the effect of being within two to
four meters of sea level. I report the β1 estimates according to Equation
1. The figure displays 10 unique regression estimates. Estimates where the
zero line falls outside of the confidence interval are statistically significant.

In addition to the robustness tests shown above, I provide several additional ro-

bustness tests in this paper’s appendices. Limiting properties to only those that sold

multiple times over the study period may cause the sample to be unrepresentative of the

larger market if properties that sell frequently are different than those that rarely sell.
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In Appendix B I provide results where I limit the sample to those properties that sold

exactly twice over the study period, omitting those that sold more frequently. Filtering

the data in this way reduces the sample size from 164,026 to 118,264 transactions. I

find that estimates of sea level exposure are very similar when using this reduced sam-

ple, providing some evidence that results are not driven by properties that sell with

an unusually high frequency. As described in Section 3, I also filter the data based on

property type. In Appendix B, I provide results where I remove this sample restriction

and find that results are robust.

The north and south coasts of Long Island are significantly different in their topog-

raphy. Whereas the south coast has significant low-lying areas close to the shoreline,

the north coast has a steeper shoreline with more cliffs (Figure 4A). The ways in which

sea level rise may affect these shorelines may be significantly different. In Appendix

C I show results for the north and south coasts separately. I find that the results of

this paper are driven by the effect of sea level exposure on the south coast, which faces

significantly higher storm risk.

The market may respond to both the immediate short term threat of a flood event,

and the longer term risk of sea level overtaking the property. In Appendix D I present

results for a model specification where the FEMA flood zone exposure definition is

included simultaneously with the elevation based definition. I find both measures have

negative coefficients. Being within a current flood zone represents potential short term

flood risk, while being outside of a flood zone but near to sea level may capture longer

term beliefs regarding risk caused by future sea level rise. The result provides some

suggestive evidence that concerns over both types of risk are salient.

The expectations of future climate change induced property risk will be incorpo-

rated into present prices by forward-looking buyers. However, storm events that may

have been induced by climate change have already affected Long Island during the
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study period. The most severe event being Hurricane Sandy in 2012. Past storm dam-

age may affect home prices either through actual structural damage or from changing

the expectations of buyers and sellers regarding the likelihood of future damage. I use

equation 2 to test for a heterogeneous effect of coastal exposure in areas that have been

subjected to high levels of past storm damage.

As an initial test, I rank all census tracts in terms of total FEMA insurance payouts

made during the entire study period, and classify “high storm damage areas” as those

above the 95th percentile. I present results of this specification in Table 6. I find that

properties in high storm damage areas had stronger negative appreciation penalties

from coastal exposure. For example, using the three meter exposure definition, exposure

caused a statistically insignificant 0.9 percentage point annual reduction in appreciation

among properties outside of the high storm damage areas, but properties with the same

exposure but located in high damage areas experienced an average annual appreciation

penalty of 2.6 percentage points.

Table 6: Triple Difference Estimates, Heterogeneous Effects by Local Storm Damage

(1) (2) (3) (4)

At risk × Year -0.012* -0.009 -0.006 -0.007
(0.005) (0.005) (0.004) (0.005)

At risk × Year × High storm damage area 0.002 -0.017* -0.023** 0.008
(0.007) (0.007) (0.007) (0.006)

High storm damage area × Year -0.010* 0.007 0.012* -0.015**
(0.004) (0.005) (0.006) (0.004)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.888 0.888 0.888 0.888
Adjusted R2 0.797 0.797 0.797 0.797
N 164,026 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.

“High storm damage area” corresponds to a tract above the 95th percentile in the total amount

of storm damage insurance claims made across the study period.
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In Table 7 I replace the time invariant definition of high damage area with a

variable that captures the cumulative amount of FEMA claims that accrued within

the tract up to the date of sale for an observation and create a dummy variable to

represent whether the tract was above the 95th percentile in terms of damage accrued

to that point in time. This approach captures time variation in storm damage. Because

Hurricane Sandy represents almost all of the variation in damage, this specification can

test for differential exposure penalties that occur because of Hurricane Sandy. I find

no evidence that properties exposed to storm damage experienced an acceleration in

value decline after experiencing the storm damage. However, fewer than a third of

observations in the data occurred after Hurricane Sandy, so the model may simply be

unable to precisely identify changing price trends over the post-Sandy period.

Table 7: Triple Difference Estimates, Heterogeneous Effects by Cumulative Local Storm
Damage Occurring Prior to Sale

(1) (2) (3) (4)

At risk × Year -0.014** -0.011** -0.008 -0.010*
(0.004) (0.004) (0.004) (0.004)

At risk × Year × High past storm damage 0.00003 0.00003 0.00004 0.00003
(0.00002) (0.00002) (0.00002) (0.00002)

High past storm damage × Year 0.003 0.002 0.000 0.002
(0.004) (0.004) (0.004) (0.004)

High past storm damage -5.773 -4.940 -0.385 -3.270
(7.443) (7.912) (8.017) (7.514)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.888 0.888 0.888 0.888
Adjusted R2 0.797 0.797 0.797 0.797
N 164,026 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
“High past storm damage” corresponds to a tract above the 95th percentile in the cumulative
amount of storm damage insurance claims made as calculated at the time of the property
transaction.
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Reconciling Tables 6 and 7 requires noting that the areas damaged by Hurricane

Sandy were somewhat predictable, in that they were clustered on the high-risk southern

coast of Long Island. Because the market already had information on this risk, the risk

of possible future storms was already putting downward pressure on prices in high storm

damage areas. Therefore, while high storm damage areas experienced the greatest

decline in prices (Table 6), Hurricane Sandy appears to have provided limited new

information to the market (Table 7). However, limitations on the time period covered

by the data may be masking some of this informational effect. Expectations about

the continued availability of insurance may have also caused the market to have little

reaction to information on the likelihood of future storms introduced by Hurricane

Sandy.

6 Conclusion

Sea level rise poses a significant and growing threat to coastal real estate. Over

recent decades, climate research has increased predictions regarding the extent of future

sea level rise and extreme coastal weather events. Current real estate prices will reflect

not only the current utility of the asset but future monetary and utility flows. Because

expectations of sea level rise became both more dire and less far into the future over the

study period, properties exposed to sea level rise should sell at an increased discount

if the market is populated by agents who are forward-looking, profit-maximizing and

have full information on climate risk.

Implementing a repeat sales method on a complete set of housing transactions

from Long Island, I find that properties exposed to the risks of sea level rise suffered

a significant appreciation penalty over the 2000-2017 study period. Properties within

three meters of current sea level were found to have annual price appreciation that was

1.2 percentage points per year lower than unexposed homes. I subject estimates to a
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battery of robustness checks to confirm the magnitude and significance of results. I also

find evidence that some demand for high risk coastal properties has been diverted to

lower risk coastal properties.

The declining value of high risk real estate suggests that the housing market is able

to price, at least a portion, of the cost of climate risk. A gradual decline in the value of

coastal real estate will help to buffer property owners from the costs of sudden climate

event shocks, such as coastal floods and storm damage. However, some literature has

suggested that the US housing market sets prices in ways that systematically reflect

incomplete information on risk. Chivers and Flores (2002), Atreya and Ferreira (2015)

as well as Hino and Burke (2020) provided empirical evidence that home buyers do

not fully understand flood risk. Bakkensen and Barrage (2018) estimated that the US

market for coastal homes in the 2007-2016 study period exceeded fundamental values

by 10% because the market failed to fully account for flood risk. An initiative to

increase information on flooding among home buyers in Finland was analyzed in Votsis

and Perrels (2016), finding that the initiative was successful in closing the information

gap and led to reduced prices among homes at risk of flooding. The possibility that

US buyers are making real estate purchases with incomplete information about future

climate risk suggests that the appreciation penalty I estimate is possibly less than what

would arise in a market with perfect information. Government initiatives to ensure the

availability and salience of climate risk information during the purchase process could

be important in overcoming issues of incomplete information.
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Appendix A

In Table 5 I provide results where I limit the sample to properties within two

kilometers of the coast. In Figure A1 I provide an elevation map where I indicate

which areas of Long Island are within two kilometers of the coast. On the south coast,

much of this area is at very low elevations, whereas the north coast contains steeper

terrain that extends to higher elevations.

Figure A1: Elevation Map of the Study Area

< 3 m (3 m , 10m) (10 m , 25 m) (25 m, 50 m) > 50 m > 2 km from coast

Areas of Nassau and Suffolk counties that are more than two kilometers
from the coast are shown in black.
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Appendix B

To generate the sample of properties used in analysis I drop a number of obser-

vations to focus the sample on observations that are most relevant to the research

question and fit with the repeat sales methodology. In this Appendix I provide results

using alternative samples to test the robustness of results. Overall, I find results are

not generally sensitive to the specific decisions made regarding which observations are

dropped.

I limit the sample to only properties that sold multiple times in order to include

fixed effects at the property level. If properties that sell frequently are not representative

of overall trends in the market the regression results will also not be representative of

the overall market. In Table B1 I show results among properties that sold exactly twice,

rather than at least two times. If the bias in the repeat sale sample is correlated with

sale frequency, this subsample should be more representative of the overall market. I

find results on the limited sample are robust and estimates are very close to the full

repeat sale sample analysis (Table 2).

The analysis of this paper is focused on the housing market. I exclude other prop-

erty types, particularly commercial and agriculturally zoned land. These non housing

property types make up 4.4% of transactions. In Table B2, I repeat the main analy-

sis but include these other property types. I find results are very similar to the main

estimates of the paper.
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Table B1: Effect of Sea Level Exposure on Price Appreciation, Only Properties that Sold
Exactly Twice

(1) (2) (3) (4)

At risk × Year -0.012** -0.010** -0.007* -0.008*
(0.004) (0.003) (0.003) (0.003)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.904 0.904 0.903 0.903
Adjusted R2 0.806 0.806 0.806 0.806
N 118,264 118,264 118,264 118,264

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.

Table B2: Effect of Sea Level Exposure on Price Appreciation, All Property Types

(1) (2) (3) (4)

At risk × Year -0.014** -0.011** -0.008* -0.009*
(0.004) (0.004) (0.004) (0.004)

Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 2 m 3 m 4 m FEMA Zone

R2 0.888 0.888 0.888 0.888
Adjusted R2 0.797 0.797 0.797 0.797
N 171,663 171,663 171,663 171,663

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.
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Appendix C

Table C1 provides split sample results where the effect of exposure is estimated

separately for properties on the North and South sides of the study area. I split the

sample area with a line that runs equidistant from the north and south coasts.

I find that the significant negative price effect of exposure is driven by properties on

the south coast. In fact, I find a marginally significant positive price effect for exposure

on the north coast (column 1). Because hurricane activity approaches from the south,

the north coast is largely protected from storm surge events. The marginally positive

price effect could be evidence of demand substitution towards coastal properties that

are considered to be relatively low risk.

Table C1: Effect of Sea Level Exposure on Price Appreciation, North Coast vs South
Coast

(1) (2) (3) (4)

At risk × Year 0.009* -0.007 -0.018** -0.012*
(0.004) (0.004) (0.005) (0.005)

Coast North North South South
Time fixed effects Y Y Y Y
Property fixed effects Y Y Y Y
Distance to coast time trends Y Y Y Y
County time trends Y Y Y Y
At risk definition 3 m FEMA Zone 3 m FEMA Zone

R2 0.907 0.907 0.881 0.880
Adjusted R2 0.829 0.829 0.785 0.784
N 51,011 51,011 113,013 113,013

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.
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Appendix D

In Table D1 I provide a horse-race regression where I include the elevation based

at risk definition simultaneously with the FEMA flood zone definition. Across the three

regressions, I find that all six coefficients are negative, though not all are statistically

significant. The result suggests that conditional on elevation, homes within FEMA

defined flood zones appreciated less quickly. Also, the result suggests that conditional

on being in a flood zone, lower elevation properties suffered a greater price penalty. The

two risk indicators are highly correlated, potentially leading to multicollinearity issues.

Therefore the results should be interpreted with caution.

Table D1: Effect of Sea Level Exposure on Price Appreciation, Impact of Elevation vs
Flood Zone

(1) (2) (3)

At risk (elevation) × Year -0.012** -0.010* -0.006
(0.004) (0.004) (0.004)

At risk (FEMA zone) × Year -0.003 -0.003 -0.007*
(0.003) (0.003) (0.003)

Time fixed effects Y Y Y
Property fixed effects Y Y Y
Distance to coast time trends Y Y Y
County time trends Y Y Y
At risk definition 2 m 3 m 4 m

R2 0.888 0.888 0.888
Adjusted R2 0.797 0.797 0.797
N 164,026 164,026 164,026

Significance levels: ∗ : 5% ∗∗ : 1%. Two-way clustered standard errors in parenthesis.
The coefficient estimates for At risk × Year correspond to the difference in annual price
appreciation attributable to sea level rise exposure.
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